Processing and characterization of porous Ti2AlC with controlled porosity and pore size
نویسندگان
چکیده
In this work, we demonstrate a simple and inexpensive way to fabricate porous Ti2AlC, one of the best studied materials from the MAX phase family, with controlled porosity and pore size. This was achieved by using NaCl as the pore former, which was dissolved after cold pressing but before pressureless sintering at 1400 C. Porous Ti2AlC samples with a volume fraction of porosity ranging from 10 to 71 vol.% and different pore size ranges, i.e. 42–83, 77–276 and 167–545 lm, were successfully fabricated. Fabricated samples were systematically characterized to determine their phase composition, morphology and porosity. Room temperature elastic moduli, compressive strength and thermal conductivity were determined as a function of porosity and/or pore size. For comparison, several samples pressureless-sintered without NaCl pore former, or fabricated by spark plasma sintering, were also characterized. The effects of porosity and/or pore size on the room temperature elastic moduli, compressive strength and thermal conductivity of porous Ti2AlC are reported and discussed in this work. It follows that porosity can be a useful microstructural parameter to tune mechanical and thermal properties of Ti2AlC. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
منابع مشابه
Synthesis and Characterization of Mechanical Behavior and Thermal Shock Resistance of Macro-Porous SiC Solar Absorber
The concentrated solar power (CSP) is one of the renewable energy sources in which solar irradiation heat energy will be used in a steam turbine to generate electrical grid. Solar radiation is absorbed by a solar receiver reactor on the surface of a porous solar absorber. In this survey, synthesis and mechanical/thermal characterization of micro-porous silicon carbide (SiC) absorber to be used ...
متن کاملCorrelation Between Surface Morphology and Optical Properties of Quasi-Columnar Porous Silicon Nanostructures
In the current work, the effect of surface morphology on light emission property and absorption behavior of quasi-columnar macro-porous silicon (PS) was investigated. PS structures with different morphology were synthesized using photo-electrochemical etching method by applying different etching current densities. SEM micrographs showed that empty macro-pores size and porosity of PS layers were...
متن کاملThe Preparation of Bamboo-Structured Carbon Nanotubes with the Controlled Porosity by CVD of Acetylene on Co-Mo/MCM-41
Bamboo-structured carbon nanotubes are grown on Co-Mo/MCM-41 catalyst in the temperature range of 873-973 K by thermal chemical vapor deposition of acetylene. This study shows that the purified carbon nanotubes have open tips and the metals of the catalyst are not encapsulated. Thus, the bamboo-structure seems to grow from the base. Pore size distribution of the product is quite narrow and ...
متن کاملInvestigation of pore-scale random porous media using lattice boltzmann method
The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...
متن کاملSynthesis and characterization of α-Alumina membrane supports and the binding effect of Poly (Vinyl Alcohol)
Ceramic Ultrafiltration membranes are considered as an alternative for the treatment of both stable water-in-oil and oil-in-water emulsions proved to be more effective in comparison with other conventional techniques. In this study, symmetric macro-porous ceramic membranes are prepared through dry pressing of α-alumina powder and the addition of various binders including Poly (vinyl alcohol). T...
متن کامل